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The model for pion-nucleon scattering proposed by Ball, Frazer, and Nauenberg is solved numerically. 
This model yields unitary scattering amplitudes while including the effects of p-meson production and the 
associated anomalous thresholds. The behavior of the solutions as a function of the width of the p meson 
and the pion-nucleon coupling constant is investigated. Cusps as well as broad peaks are generated in the 
elastic-scattering amplitude by the p-meson production. The effects of the complex singularities are investi
gated in detail by comparison with another treatment of pion-nucleon scattering in which anomalous cuts 
are absent. Also, the existence of poles on unphysical sheets is studied by means of a simplified model. 

I. INTRODUCTION 

AS the analytic structure of two-body scattering 
amplitudes has become increasingly well under

stood and exploited in recent years, it has become 
apparent that even at low energies these amplitudes 
may be strongly affected by the inelastic production of 
low-mass multiparticle states. There seems to be some 
experimental as well as theoretical justification for 
assuming that these production processes may be 
dominantly the production of a two-particle state in 
which one or both of the particles are unstable and sub
sequently decay, producing the multiparticle final state. 
A procedure by which scattering and production of 
unstable particles may be treated has been developed 
by Ball, Frazer, and Nauenberg1; in particular, these 
authors have constructed a model for pion-nucleon 
scattering in which the effects of the production of a 
pion are included. The complexity of the three-body 
states is reduced by treating the two pions as an un
stable p resonance. This model satisfies the unitarity 
requirements for all three processes n+N—>ir-\-N, 
TT+N-^P+N, and p+N->p+N by having the 
appropriate discontinuities for the scattering ampli
tudes in both total energy and energy of the two pions 
forming a p. At the same time, the longest range inter
action in the ir-\-N—»p+iV channel, namely one-pion 
exchange, is included. To preserve the conditions 
demanded by unitarity, which is the main task BFN 
impose upon themselves, it is necessary as well to add 
nucleon pole contributions to the one-pion-exchange 
approximation. The end result of BFN is a linear 
integral equation whose solution allows the calculation 
of the various scattering amplitudes by quadrature. 
The main difficulty in carrying out this program lies in 
the evaluation of the kernel of the integral equation 
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1 J. S. Ball, W. R. Frazer, and M. Nauenberg, Phys. Rev. 128, 
478 (1962). We refer to this work hereafter as BFN. 
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which requires a numerical integration over complex 
singularities arising from the anomalous thresholds 
present in this process. 

The purpose of this paper is to report on the results 
obtained by carrying out the computational procedure 
formulated in BFN and to discuss the physical impli
cations of these results. While the main interest in per
forming this calculation was as an intermediate step 
prior to doing the physical irN—>pN problem, the 
simpler model of BFN affords a better opportunity for 
an investigation of the scattering amplitudes un
hampered by inessential complications of spin. Of 
particular interest is the effect of the complex singulari
ties on the scattering amplitudes, especially in the 
region near the p-nucleon threshold. Also, the familiar 
cusplike behavior in the cross section at the inelastic 
threshold2-3 and its dependence on the pion-nucleon 
coupling constant as well as the width of the p can be 
studied. Finally, an attempt can be made to understand 
the underlying analytic structure of the solutions ob
tained as well as their self-consistency. 

In Sec. II, we give an outline of the calculation, which 
is essentially a recapitulation of the relevant parts of 
BFN. Section III lists the main results of the calculation 
for various values of the parameters involved. We also 
present an interpretation of the results with the aid of 
a simplified version of the BFN model. 

II. OUTLINE AND DETAILS OF THE CALCULATION 

While the conventions of BFN will be used consist
ently throughout this paper, we nevertheless list here 
the assumptions and definitions given in BFN that are 
directly pertinent to our calculation. In the interests of 
simplicity, all spins and isotopic spins have been 
neglected, including those of the p resonance, and only 
5-wave scattering for all channels has been considered. 
The amplitudes for the processes irN —> irN, TN —> piV, 
pN-^pN are given by Tn(s,t), T2i(s,t,a)), r22(>,/,co,a/), 

2 M. Nauenberg and A. Pais, Phys. Rev. 126, 360 (1962). 
3 J. S. Ball and W. R. Frazer, Phys. Rev, Letters 7, 204 (1961) 
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respectively, where s designates the usual square of the [°° 
center-of-mass energy, t the invariant momentum n12(s) = B(s)+j ^dsp2(s+)K(s,s)n22(s), (2.4b) 
transfer, and cc is the square of the energy of the two w+w 
final resonant pions of T21 and T22 in their center-of- % r pi(s/)a(s/)d2i(s

f) 
mass frame, while a/ is the same for the two initial pions dn (s)= — / dsr 

ofT22 . *Jc s ' s 
Amplitudes I n , i f 12, M21, a n d ^22, which are slowly 1 r00

 p (s f)n (sf) 
varying functions of co and a/, can then be formed by / dsr , (2.4c) 
factoring out the initial- and final-state interactions w J (M+H)2 S'—S 
between the pion pairs as follows: . . .. , ,._, , 7 , /x_ 

J f i i ( j , 0 = r n ( 5 , 0 , (2.1a) i i 2 ( j ) = — dsf-

M21(s^)=T21(s^co)/f(c*) = M12(s,t,a>), (2.1b) • * S 

1 r00 p i ( V ) ^ i 2 ^ ) 
M s a ^ ^ O ^ ^ ^ ^ c o y ) / / ^ ) ^ ) , (2.1c) / ^ds' ; , (2.4d) 

where /(a>) is the S-wave pion-pion scattering amplitude 

/ ( « ) = 1 6 » - : « / ( w - V ) ] 1 ^ w s i n « ( « ) <*„(,)= — f 2 ^ / 2 ( V ) W 2 l ( ' ° , (2.4e) 

and r22 c refers to "connected" scattering processes.4 If w (M+2fi) s 

we now specialize to the case co=o/=wp
2 , where \ y p2(s+)n22(s') 

mp(~5.4/z) is the physical mass of the p meson, the d22(s) =— / dsf , (2.4f) 
functions M can then be written in terms of 2X2 n and ^ J (M+2M)2 /—£ 

M= (I-l-d)-1 (2 2) w n e r e t n e kernel of the integral equation is 

/•OO 

The particular choice of n and d made by BFN leads L(s,s') = / dsf,p1{s+
,,)K{sys

f,)K{s,,sn) 
to the following linear integral equations: J(M+M)2 

n21(s) = B(s)+ ds'p2(s+
f)L(s,s')n21(s'), (2.3a) + - / ^ P i ^ M — 

» 2 2 W = 5 ( j ) + f ^ / P 2 ( V ) ^ f e ^ ) ^ 2 2 ( / ) • (2.3b) 
X ( W ) 2*K(S") 

(M+2fi) * T ' v * " - * 7r(/'-s) (/'-/). 
(2.5a) 

These equations have the virtue that they contain f. B(s)—B(s) 
only real functions and the integral is evaluated over a ^S}S ' ~ / _ ,\ > \ ' ) 
real contour. All of the complexity due to the anomalous 
thresholds is now contained in the kernel L(s/). The a n ( i B(S) is the 5-wave projection of the one-pion-
remaining n's and d's can then be obtained by quadra- exchange pole term, given by 
ture as follows: 

nu(s) = 
' (M+2M) ' 

/•» B(s) = In 1 
/ ds,

P2(s+
/)K(sJs

/)n21(s
,)) (2.4a) ir La(s)-l3(s)J 

J (M+2U)2 a n d 

(2.6) 

B(s) = ds'Pl(s')K(s,s')B(s')+- ; [_2B{s+')-B{s)-2ia{s')1, (2.7) 
J (M+iif X J c S' — S 

irsg 
a(s)= — , (2.8a) 

{ [ > - ( M + M ) 2 ] [ > - (M-ams- {M-mpms- (M+m^V12 

TTSg 

0(s) = , (2.8b) 
s2-s(2M2+mJi-^)+ (U2-/x2) (M2-m^) 

{ C . - ( i f + / x ) 2 ] b - ( M - M ) 2 ] } 1 / 2 

P l(s) = — , (2.8c) 
16x5 

4 See Sec. II of BFN. 
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02 0) = / <&/ 1 
JAU2 USwh 

o'-V 
/ (" ' ) |2 , (2.8d) 

where M and /* are the masses of the nucleon and pion, 
respectively, and g is the pion-nucleon coupling con
stant. The subscript + on the variable s as it appears 
in the foregoing equations implies that 5 is to be taken 
at its limiting values just above the various cuts in
volved. The precise definition of this procedure is given 
in BFN. We represent the pion-pion scattering ampli
tude /(w) by a Breit-Wigner formula in the following 
manner: 

/(co) = 167r[co/(co-V)J/2 

(T /2)[ (co-V)/co] i / 2 

x-m p
2 - co -^ ( T / 2 ) [ ( co -V) / co ] 1/2 

(2.9) 

in which y is related to the half-width of the p meson on 
the co1/2 scale by 

7i/2= ( Y / 4 W P ) [ ( < - Vy^p*] 1 ' 2 . (2.10) 

Finally, the complex contour C goes from s__ to s+ 

where 

^=M2+Jwp
2T^K/2M)C(4M2~iu

2)K2~V)]1/2 

= 59.39 M2T179.89*>2, (2.11) 

and C may cross the real axis at any point between 
(M+fx)2 and (M+fnp)

2. In integrals in which the inte
grand has a cut in that region, the contour is split into 
two parts, such that one segment goes from S-. to a 
limiting point just above the cut and the other from a 
limiting point just below the cut to s+. 

The first step in solving the n and d equations is to 
calculate the kernel L(s,s') for real values of s,s' 
> (M+2/JL)2. This is probably the most difficult part of 
the BFN program, as it requires a numerical integration 
over complex singularities arising from the anomalous 

FIG. 1. The contour C in the 
s plane for co = wp

2~29. 

s-plane 

thresholds present in the problem. Once the kernel is 
known, Eqs. (2.3a) and (2.3b) can be solved numeri
cally by a matrix inversion procedure yielding n%i and 
U22- The other n's and d's follow directly from Eqs. 
(2.4), and the scattering amplitudes can then be ob
tained. We have carried out this somewhat lengthy, 
but straightforward procedure, and the results are 
presented in the following section. 

III. RESULTS AND THEIR INTERPRETATION 

The results obtained for the pion-nucleon elastic- and 
inelastic-scattering amplitudes are shown in Figs. 2, 3, 
and 4. Actually, what has been plotted are the squares 
of scattering amplitudes times appropriate phase space 
factors, so that the unitarity limit for the elastic channel 
is 1, while that for the inelastic channel is 0.25. It can be 
seen that increasing the pion-nucleon coupling constant 
causes cusps to grow until they finally become rather 
flat and near the unitarity limit below the second 
threshold but fall off fairly rapidly above that point. 
As the width of the p resonance is increased, the cusps 
become more rounded or "woollier," but the same gen
eral trend of growth and loss of symmetric shape with 
increased pion-nucleon coupling can be noted. 

Figure 5 shows the departure of T2i satisfying uni
tarity from the Born approximation for T21 denoted by 
B2h In the energy region where the Born term is small 
compared to the unitarity limit the rise of B21 is closely 
matched by that of T21 as had been conjectured by Ball 
and Frazer.3 Also, for values of the coupling constant 
such that B21 is near the unitarity limit the shapes of 
B21 and T21 are quite similar; however, for larger 
coupling constants when B21 is an order of magnitude 
above the unitarity limit the shape of T21 differs from 
that of B21 in having a slower rise and a maximum at 
higher energy. 

In Fig. 6, we have plotted the real and imaginary 

I'T^sH5 

0.2] 

FIG. 2. The solid curves 1, 2, 3 give the elastic scattering ampli
tudes squared for increasing values of the w-N coupling constant 
in the BFN model. The dashed curves are the corresponding in
elastic amplitudes. The quantity W = s1/2 and the width of the p 
resonance is very small: Y = 0.1JU2. The top curve decreases only 
very slowly as it extends left towards the first threshold. 
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FIG. 3. The elastic and inelastic scattering amplitudes squared 
for increasing values of the TT-N coupling constant. The p-resonance 
width is now y —1.0/*2, and the effect of this larger width may be 
seen in the more rounded cusps as well as in the more gradual 
appearance of the inelastic channel. 

parts of the determinant of the d% 

which appears as a factor in the denominator for the 
scattering amplitudes irN-^wN, irN ~~> pN, pN—> pN. 
The real part of D is remarkably flat between si and s2, 
and this behavior is reflected in the flatness of the 
elastic scattering amplitude for certain values of g, as 
we have already seen. We shall discuss this remarkable 
behavior of D later in the section with the aid of a 
simplified model. Finally, the D function, which rises 
smoothly to its asymptotic value of 1 at s= •— oo, has 
no zeros in the unphysical regions of the s plane, at 
least for interesting values of the pion-nucleon coupling 
constant. Figure 6 shows this to be true along the real 

FIG. 4. The elastic and inelastic amplitudes for increasing g, but 
with p-resonance width large: y = 10.0 n2. The increased "woolly" 
effects of a wide p-resonance width can be clearly seen. 

axis below the first threshold, and one may check the 
rest of s plane using the well-known "principle of the 
argument" theorem.5 Thus, the BFN model is seen to 
be self-consistent in so far as the scattering amplitudes 
contain no spurious singularities, or "ghosts," which 
often plague solutions to this type of problem.6 

5 See, for example, E. T. Copson, An Introduction to the Theory 
of Functions of a Complex Variable (Oxford University Press, 
Oxford, England, 1955), p. 119. 

6 It is well known that ghost poles are produced in the calcu
lation of one channel partial-wave scattering amplitudes by the 
N/D method when the interaction is sufficiently repulsive. In 
two-channel scattering processes with an interaction only in the 

To try to estimate the effect of the complex singu
larities on the scattering amplitudes, we also solved the 
following variation of the BFN model. Instead of taking 
the one-pion exchange as the dynamical input, we 
exchanged a particle having the mass of the co. With 
this heavier particle, there is no anomalous threshold, 
and hence there are no complex singularities. Using this 
interaction, we varied the coupling constant and com
pared the solutions with those obtained in the one-
pion-exchange model. For small values of coupling, the 
behavior of these solutions is similar to that obtained 
with the pion-exchange interaction in that a small cusp 

0.3 
UNITARY 
LIMIT 

0.2 

0.1 

0 

^ J^ 

- YY ; 

V i i i 

1 
— 10/J 

™™ J 

( W - M ) / p 

FIG. 5. The solid curves 1, 2, 3 are the inelastic scattering ampli
tudes squared for increasing values of the w-N coupling constant. 
The dashed curves give the corresponding Born terms squared. 
The p width is constant at 7 = 0.1 /A Note that the inelastic 
amplitudes remain below the unitarity limit. 

appears at the p-production threshold and the produc
tion amplitude increases with increasing coupling con
stant. However, above a critical value of coupling the 
behavior of this solution departs radically from the 
pion-exchange solution. The elastic channel (Tu) cusp 
moves toward lower energy becoming a resonance, 
while the production amplitude T2i, which contains the 
only interaction terms, decreases with increasing coupl
ing, becoming negligibly small for very large coupling. 

To illustrate the difference between these solutions, 
we have taken the co coupling large enough to produce 

% / / 
Y y 

FIG. 6. The solid curves give the real and the dashed curves the 
imaginary parts of the D function in the BFN model. The labels 
1, 2, 3 refer to results obtained for increasing values of the ir-N 
coupling constant. For these curves 7 = 0.1 ju2. 

off-diagonal channel, which would usually be considered an 
attractive interaction for the two elastic amplitudes, ghosts can 
also appear. An example of a solution to a two-channel problem 
containing a ghost pole occurs in the work of L. F. Cook and B. W. 
Lee, Phys. Rev. 127, 297 (1962). 
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FIG. 7(a) The Born terms squared for the w- and co-exchange versions of the BFN model. The coupling constants have been chosen 
so that the Born terms are roughly the same in the low-energy physical region, (b) The scattering amplitudes squared corresponding to 
the Born terms of Fig. 7(a). For the cases shown here, the w-exchange model has already developed a ghost pole, while the 7r-exchange 
model does not contain a ghost, (c) The corresponding inelastic scattering amplitudes squared for the Born terms of Fig. 7(a). Note that 
the ghost-containing, w-exchange, inelastic amplitude is significantly smaller than that of the 7r-exchange model. 

a resonance, and for the sake of comparison, we have 
adjusted the pion-exchange coupling so that the input 
Born terms for both solutions are nearly equal in the 
low energy region as shown in Fig. 7(a). In Fig. 7(b) 
we show the Tu and T2i amplitudes for each input Born 
term. The striking difference between these solutions is 
due to a "ghost" pole which appears as a zero in the D 
function for the co-exchange model at the critical value 
of the coupling constant and moves to the right as the 
coupling constant is increased. Once this "ghost" pole 
appears, the physical significance of the solution is 
doubtful, since the solution then contains an interaction 
pole in each channel of entirely mathematical origin and 
without any physical basis. As has been pointed out, 
the pion-exchange model contains additional inter
actions required by unitarity of the two-pion final state, 
and these interaction terms in 7*21 and T22, together 
with the complex singularities, provide enough addi
tional interaction to allow the NLt~l equation to satisfy 
unitarity without producing a spurious singularity. 
Thus, unitarity is maintained with only interaction 
terms of physical origin. These results indicate that 
great care must be exercised in any approximation 
scheme to low-mass exchange which ignores the com
plications of complex singularities. 

The precise origin of the shape and size of the curves 
presented in Figs. 2-4 can, in principle, be found from 
a thorough investigation of the analytic properties of 
the scattering amplitudes as a function of s. Unfortu
nately, our model is already too complicated for practic
able ventures into unphysical Riemann sheets, but an 
approximate BFN model, which produces results 
similar to the original, does allow for easy excursions 
away from the physical cut. This approximation is made 
by replacing the left-hand partial-wave singularities of 
the inelastic channel in the BFN model by a single pole 
and also taking the p to be a stable particle. We shall 
refer to this simplified version of BFN as the single-pole 
approximation. 

where 

With this pole approximation the elastic scattering 
amplitude Tu becomes 

Tu=IP(Ui-W2)/(s-So)D9 (3.1) 

D=l-~R2(U1-W1)(U2-W2), 

Wi(s) = — / ds' , t = 1,2 (3.2) 
IT J si (s'~-s)(s, — S0) 

si is the position of the first threshold, and s2 that of the 
second. The kinematic functions p* are essentially the 
same as those of BFN, namely, 

1 { [ 5 - ( M - w 4 - ) 2 ] [ ^ - ( M + ^ ) 2 ] } 1 / 2 

Pi= , i=l,2 
16TT 

(3.3) 

with mi=fjij M2= mp, but unlike BFN the form of p2 has 
been taken here to correspond to the fact that the p 

KT„r 
R = 0.67xl05 

R = 0.56x l0 5 

R = 0.50x l0 5 

R = 0.40x105 

50 $0 70 

( W - M ) / p 

FIG. 8. The elastic scattering amplitudes squared in the single-
pole approximation with stable p meson. The values of the residue 
of the interaction pole appropriate to each curve are shown. The 
pole position is at s0=— 500/A The top curve remains virtually 
constant down to the first threshold. 
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FIG. 9. The lower solid curve is the imaginary part of the D 
function in the single-pole approximation. The upper solid curve is 
a term which enters into the real part of D — l — R2(U\ — W\) 
(U2—W2), and the dashed curves are the single-channel contri
butions to this term. Note that each single-channel curve has a 
cusp at its respective threshold, and the resultant product curve is 
hence fairly constant between the two thresholds. 

meson is now stable. R is the residue of the interaction 
pole, while So is its position. In this model a ghost pole 
will appear at 5= —00 when R2=l/(UiU2) and con
tinue to move to the right as R is increased. The limiting 
position of the ghost pole with large R, however, 
is so. 

The values of the scattering amplitude which are 
obtained in this model are shown in Fig. 8. I t can be 
seen that the curves resemble those obtained with the 
BFN model and develop in a similar way with increasing 
R. In particular, the top curve is virtually constant 
between Si and s2, as likewise occurred for the preceding 
model. The interaction pole position is at so= — 500/z2, 
this point having been chosen because of the close 
similarity of the results with those found in our calcu
lation of the BFN model. In Fig. 9, we plot what are 
essentially the real and imaginary parts of the D func
tion in the single-pole approximation. The single-
channel contributions are also shown, and it may be 
noted that it is their product which leads to the virtual 
constancy of Re D between Si and s2, which we have 
already seen in the BFN model (see Fig. 6). 

In order to understand the shapes obtained for the 
physical scattering amplitude in Fig. 8 and, in particu
lar, the rather curious flat curves near the unitarity 
limit for certain values of R, one must study the analytic 
behavior of this function in the nearby unphysical 
regions of the s plane. This is done in the Appendix. I t 
is found there that a pole whose position varys with R 
moves close to the region of si to s2 for values of R 
corresponding to the top curve in Fig. 8. The nearby 
pole not only causes the scattering amplitude to rise 
towards its unitarity limit in the immediate vicinity of 
the pole, but also, because of the flat behavior of the D 
function, can communicate this effect on the scattering 
amplitude throughout the region from s\ to s2. The result 
is that the scattering amplitude is nearly constant and 

close to its unitarity limit between si and s2 for these 
values of R. 

The same argument can be applied to the results 
obtained for the BFN model. The behavior of Re D as 
shown in Fig. 6 can be traced to the scattering ampli
tudes' having 5-wave thresholds at both s± and s2. Since 
each term of D is the product of two functions, one with 
a cusp at Si and the other with a cusp at s2, the resulting 
D function will tend to be relatively flat between these 
two cusps provided the maxima of D at Si and s2 are 
about equal. A nearby pole in the scattering amplitude 
will necessarily emphasize this effect. We also expect 
that if the threshold behavior at si were that of a partial 
wave with / > 0 , the cusp-like phenomenon at s2 would 
become dominant, producing a resonance behavior 
below s2 for sufficiently large coupling constant, as 
occurred, for example, in the work of Frazer and 
Hendry . 7 
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APPENDIX 

In the single-pole approximation to two-channel 
stable-particle scattering with an interaction pole of 
residue R and position so in the off-diagonal channel, a 
common factor in the denominators of the scattering 
amplitudes Tlh T21, and T22 is 

D=l-R2{Ul-W1){U2-W2), (Al) 

where the various quantities given in the above equa
tion are defined in Eq. (3.2). The Wi may be written as 

Wi(s) = ZVi(s) - Vi(so)l/\j-so3, (A2) 
where 

1 ( {M-m%)2 ) 

16TTI S J 

i = l , 2 (A3) 
and 

<Pi(s)=(l/ir)ri]nZii 

n= { [ > - (M+Mi)2yis- (M-Mi)22}1/2, (A4) 

^ - ( n - + l ) / ( n - l ) . 
Wi and W2 are, of course, related to the first and second 
channels, respectively. We shall henceforth drop the 
suffices wherever both channels are implied. The cuts of 
W in the s plane are determined by the cuts of <p. To 
find these we must define the branches of r and Ins. If 

[ I n u n 
? 

Res- (M -mY J 
(A5) 

[ Ims ~i 
I 

_ _ _ _ _ R e s - (M+m)2J 
7W. R. Frazer and A. W. Hendry, Phys. Rev. 134, B1307 

(1964). 
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then 
rHr|exp[*(02-0i)]/2 (A6) 

and the Riemann surface of r can be specified as follows: 

sheet 1: 

sheet 2 : 

O<0l<27T? 

— 7T<02< 7T, 

27T<^l<47T, 

~ 7 T < ^ 2 < fl*. 

(A7) 

The cuts of In z in the z plane are taken to the left. These 
definitions specify the analytic properties of <p, whose 
sheet we can describe in the following manner: 

sheet A: r on sheet 1, 
—7r<argz<7r, 

sheet B: r on sheet 2, 
-37r<arg0<-7r? (A8) 

sheet C: r on sheet 2 , 
7r<arg2<37r, etc. 

There are, of course, an infinite number of sheets due to 
the infinity of sheets from the logarithm. 

One can also show that the various sheets have the 
following cuts connecting the Riemann surface. Sheet 
A has only one cut to the right starting at (M+ni)2. The 
sheet reached by going through this cut is sheet B, but 
B also has a cut to the left starting at (M—m)2 and in 
passing through this cut sheet C is reached. However, 
C has a right-hand cut as well, and this leads again to 
further sheets, and so on. Thus, of the infinite number 
of sheets of <p, one has a single right-hand cut, while all 
other sheets have both left- and right-hand cuts. It 
follows from the definition of W that the locations of 
the cuts of W are exactly the same as those of <p, and 
therefore the sheets of W may be described similarly to 
those of (p. 

Finally, the physical singularities of D, which specify 
the unitarity cuts of the scattering amplitudes, can be 
deduced. The physical sheet must contain only right-
hand cuts in D, so the physical sheet (or sheet I) of the 
scattering amplitudes is denned by taking W\ and W2 

on their sheets A, which we shall designate by sheet A x 

and sheet A 2, respectively. Thus, the physical cut for 
!Tii, for example, starts at si due to the discontinuity in 
Wh but there is an additional contribution starting at 
s2 from the discontinuity in W% If one passes through 
the physical cut between Si and s2, one arrives on a sheet 
which can be described by evaluating Wi on sheet Bi 
and W2 on sheet A2. We denote this sheet as sheet II. 
By going through the physical cut on sheet I above s2, 
one can reach a sheet where W\ is evaluated on sheet 
Bi and W2 on sheet B2. This we designate sheet III. 
Finally, one can cross through the cut on sheet III 
between si and s2 and arrive on sheet IV, where W\ is 
taken on sheet Ai and W2 on sheet B2. The unphysical 
sheets II, III, and IV will also contain left-hand cuts 
which will lead to further sheets, but these four sheets 
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FIG. 10. The physical, or 
unitarity, cut on the physi
cal sheet (sheet I). Below 
is shown a cross-sectional 
view of the unitarity cut 
and the sheets it connects. 
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JE 

rsr 

DC 
DC 

are those which are most intimately connected to the 
physical region and therefore of greatest interest as far 
as studying the effects of nearby singularities on the 
physical cross sections are concerned. 

In Fig. 10, we show the physical cut on sheet I and 
also a cross-sectional view of this cut to illustrate how 
the four sheets are connected. We note that the point 
s2 is common to all four sheets. Any unitarity preserving 
model of two-channel processes will contain sheets 
equivalent to these.7 

The fourth quadrants of the four sheets and the 
singularities they contain in the single pole approxi
mation are given in Fig. 11. Since Schwarz reflection 
applies to the scattering amplitudes, there is symmetry 
about the real axis. As the residue of the interaction 
pole is varied, poles of the scattering amplitude move 
about in unphysical regions as indicated in Fig. 11. The 
region about s2 is noticeably bare of poles on all four 
sheets unlike the case of Frazer and Hendry, where a 
pole moving about s2 was of prime importance to their 
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R=0.68xl0% 
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-R= 1.07x105 
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R = 0.58 x10s 
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SHEET EZ" R = 0.45x10^ 

FIG. 11. The fourth quadrants of sheets I-IV and the singu
larities they contain for various values of the residue of the inter
action pole in the single-pole approximation. Poles are denoted by 
circles and cuts by heavy lines. The interaction pole position is at 
5o==-500/x2. 
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results. The behavior shown in Fig. 8 can nevertheless 
be reconciled with this somewhat disturbing fact if we 
remember that both channels in our model are in 5 
waves, while in the Frazer-Hendry model, the first 
channel is in a D wave. If we look in Fig. 9 at the single-
channel contributions (given by the dashed lines) to 
Re[Z7i— Wi)(U2— W2)}, we see that each has the usual 
cusp-like behavior at its respective threshold. Since 
both curves represent S-wave behavior, they have 
largely the same character and magnitude about their 
thresholds, and the resultant product which enters into 
the two-channel solution is thus almost constant be
tween Si and $2. We emphasize that the shape of this 
curve is purely a threshold phenomenon and is inde
pendent of the poles in the scattering amplitudes. The 

I. INTRODUCTION 

PRESENT knowledge of the natures of the various 
maxima occuring in the pion-nucleon cross sec

tions,1,2 for pion kinetic energies below 1.6 BeV (lab), 
includes quite certain assignments of angular momenta. 
Parities are, however, not confidently understood 
except in the well-known case of the "P33" resonance 
(isotopic spin T=%, angular momentum 7 = f ) , occur
ring in pion scattering at 200-MeV kinetic energy in the 
laboratory frame, or 1238-MeVftotal energy in the wN 
center-of-mass frame. 

Angular distribution in photoproduction3-5 and in 
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effect of poles, so to speak, is simply to amplify the 
surrounding kinematic behavior. Thus, a pole in the 
scattering amplitude near the $1 to $2 region will tend to 
stress the flat behavior which occurs in the D function. 

We see, in fact, that there is a pole near this region 
for appropriate values of R corresponding to curves in 
Fig. 8; namely, on sheet I I there is a pole which ap
proaches the point Si and eventually emerges on sheet I 
as a bound state. Because of the flat nature of the curve 
in Fig. 9, this pole can strongly influence the whole 
region between si and $2 and eventually give rise to the 
uppermost curves of Fig. 8. The shape of the lower 
cusp-like curves of Fig. 8 is due mainly to the numerator 
of Tu given by R2(U2~- W2), whose real part is plotted 
in Fig. 9. 

elastic scattering6,7 have allowed assignments of angular 
momentum to the phenomena here of interest as 
follows8: 

Isotopic Pion K. E. irN total 
spin (Lab) cm. energy / 

3/2 200 MeV 1238 MeV 3/2 
1/2 600 MeV 1512 MeV 3/2 
1/2 900 MeV 1688 MeV 5/2 
3/2 1350 MeV 1920 MeV 7/2. 

Our particular concern in this article is the phe
nomenon at 1512-MeV c m . energy. Angular distribu-
tionm easurements8 infer that a 7 = f amplitude is 
strong at this energy; but other amplitudes are not 
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Polarization of Recoil Protons in n±p Elastic Scattering Near 600 MeV* 
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Angular distributions of recoil-proton polarization in elastic ir^p scattering were measured at 523-, 572-, 
and 689-MeV incident pion kinetic energy. Polarization measurements were made by observing the azimuthal 
asymmetry in the subsequent scattering of recoil protons in large carbon-plate spark chambers. Typical 
strong variation of the polarization with pion scattering angle near the irp diffraction minima was observed. 
Since existing opinion favors a Dn resonance at 600 MeV, a phase-shift analysis was attempted in order to 
confirm the existence and parity of this resonance. Available irp total and differential cross sections, these 
polarization data, and some possible restrictive assumptions related to the 600-MeV resonance were used in 
the analysis. Though the polarization results aided significantly in restricting the number of acceptable 
phase-shift sets, still, many plausible and qualitatively different sets were found. 


